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Abstract. We calculate color electric fields of quark/antiquark (q̄q) and 3-quark (qqq) systems within the
Chromodielectric Model (CDM). We explicitly evaluate the string tension of flux tubes in the q̄q-system
and analyze their profile. To reproduce results of lattice calculations we use a bag pressure B = (320MeV)4

from which an effective strong-coupling constant αs ≈ 0.3 follows. With these parameters we get a Y -shaped
configuration for large qqq-systems.

PACS. 11.10.Lm Field theory: Nonlinear or nonlocal theories and models – 11.15.Kc Gauge field theories:
Classical and semiclassical techniques – 12.39.Ba Phenomenological quark models: Bag model

1 Introduction

Quantum Chromodynamics (QCD) is the widely accepted
theory for the dynamics of quarks and gluons. Despite its
success in the regime of high momemtum transfer it re-
mains an outstanding task to explain the low-energy be-
havior of hadrons within QCD. Only in the last 10 years
lattice QCD (lQCD) has found detailed evidence for the
confinement of quarks in hadrons [1] but it still fails to
give a dynamical description of this phenomenon. It is
therefore necessary to rely on models, capable to describe
confinement dynamically on the one hand and to repro-
duce static results of lQCD on the other hand.

In this paper we present static calculations within the
Chromodielectric Model [2–4], namely the detailed analy-
sis of quark-antiquark strings and three-quark configura-
tions.

2 Phenomenology of the model

In the Chromodielectric Model (CDM) it is assumed, that
the vacuum of QCD behaves in the long-range limit as a
perfect color dielectric medium with vanishing dielectric
constant κ = 0. The medium is generated through the
non-Abelian part of the gluonic sector of QCD which is
represented in the CDM as a scalar color singlet field σ.
The remaining two Abelian gluon fields are able to propa-
gate through this medium. The scalar field σ is driven by a
scalar potential U(σ) (see fig. 1) which exhibits two (quasi)
stable points, separating the non-perturbative, perfect di-
electric phase where σ = σvac, from the perturbative phase
with κ = 1, where the color fields can propagate freely and
σ = 0.
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In our description quarks are treated classically and
the gluons are coupled to the quark current jµ,a. This
results in the following Lagrangian:

L = Lq + Lg + Lσ , (1)

Lq = −
∑

k

mk

√
1− ẋ2

k w (x − xk(t))

−gs ja
µ Aµ,a , (2)

Lg = −1
4
κ(σ)F a

µνFµν,a , (3)

Lσ =
1
2
∂µσ∂µσ − U(σ) , (4)

Fµν,a = ∂µAν,a − ∂νAµ,a, a ∈ {3, 8} , (5)

jµ,a =
∑

k

qa
k uµ

k w (x − xk(t)) = (ρa,  a) (6)

with uµ
k being the 4-velocity of particle k with classical

charge qa
k (see fig. 1) and extension w (x − xk(t)). The

scalar potential U(σ) is chosen to be of a quartic form
and is shown in fig. 1. In this work U(σ) has no relative
maximum between σ = σvac and σ = 0 and U is deter-
mined through the bag pressure B = U(0) and σvac alone.
The dielectric function is of the form κ(σ) = exp

(
−σ3

σ3
0

)
for σ ≥ 0 and κ(σ) = 1 else and has κ(σvac) ≡ κvac � 1.

In the static case, the equations of motion for the elec-
tric potentials Φa and for the confinement field σ following
from eq. (1) are

∇ · (κ(σ)∇Φa) = −gs ρa (7)

and

∇2σ = U ′(σ)− 1
2

κ′(σ)
κ(σ)2

(
D3 · D3 + D8 · D8

)
, (8)
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Fig. 1. Top: the color charges of the green (left), red (right)
and blue (lower) quark. Bottom: The dielectric function κ(σ)
(dashed line) and the scalar potential U(σ) (solid line).

where Da = κ(σ)∇Φa denotes the color electric displace-
ment. The energy (neglecting quark masses) is given by

E = Eσ + Eg (9)

Eσ =
∫ (

1
2
(∇σ)2 + U(σ)

)
d3r , (10)

Eg =
1
2

∫ (
E3 · D3 + E8 · D8

)
d3r ≡

∫
εg d3r. (11)

Confinement of color fields in our model is achieved by
means of Gauss’s law in eq. (7) and the characteristic
form of the dielectric function κ(σ): A single colored quark
would generate a spherical electric field. In the vicinity of
the quark the field is strong enough to push the confine-
ment field from σ = σvac towards smaller values and forms
a cavity in the surrounding vacuum. As κ(σ) drops to zero
at the boundary of the cavity, the electric field Ea = Da

κ(σ)

diverges and so does the electric-field energy (11). Note
that in this version of CDM there is no direct coupling
between the quarks and the confinement field as proposed
in [2,5].

3 q̄q strings

In contrast to configurations with net color, all white con-
figurations have finite energy and color fields are confined
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Fig. 2. The color fields E3 (upper panel) and D3 (lower panel).
The contour lines give the electric energy density (11) εg =
1, 3, 5, 7 fm−4 from the outside. Only the electric displacement
Da is confined to the flux tube.

into well-defined spatial regions. Again, eq. (7) enforces
an electric color field, but field lines now end on the anti-
color and are parallel to the boundary of the cavity. In this
case the color electric displacement is suppressed with the
dielectric constant in the non-perturbative vacuum. Both
the electric-field energy and the confinement field energy
are negligible in the outside.

In this section we study the field configurations of color
flux tubes stretching from a quark q to an antiquark q̄. We
start by showing the electric fields E3 and D3 in fig. 2. It
is seen that the electric displacement vanishes outside the
cavity. The flux tube can be characterized by the profile
function, i.e. the component of D parallel to the string
axis along the center line perpendicular to the string axis.
This profile has been studied within lQCD in [6]1. The
profile depends mainly on the choice of U(σ), i.e. on the
bag constant B and the vacuum value σvac as shown in
fig. 3. The bag constant acts as a pressure against the
electric field and therefore an increasing B leads to de-
creasing width of the profile. In order to fulfill Gauss’s
law (7) the electric D field on the string axis must in-
crease with increasing B.

The value of σvac controls the surface of the bag.
Decreasing its value leads to a sharper surface. In our

1 Note that in CDM the D field is confined and we compare
it to the E field of reference [6].
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Fig. 3. The string profile of a 1.2 fm string. Increasing the bag
pressure B decreases the width and simultanously increases
the maximal value of the D field (top) and increasing σvac

smoothes the surface (bottom). All constant parameters are
taken from table 1.

Table 1. Model parameters used in this work.

B
1
4 σvac κvac gs

320 MeV 1.5 fm−1 0.01 1.0

simulations the detailed form of the dielectric function (see
fig. 1) has little effect on the profile.

With the parameters given in table 1 we reproduce the
results of lQCD [1,6] as can be seen in fig. 4.

Using the same parameters we can calculate the string
tension of the flux tube. We vary the q-q̄ distance r and
plot the total energy of eq. (9) as a function of r in fig. 4.
For r > 0.5 fm the energy rises linearly. We fit our results
to a Cornell potential

Ec(r) = E0 + τr − αeff

r
, (12)

where the linear term reflects the confinement behavior
for large q̄q separations and the Coulomb term describes
the one-gluon exchange dominant at small r. The con-
stant term E0 = 560 MeV is due to electric self-energies
included in eq. (11). We find a string tension τ = 988
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Fig. 4. Top: the string profile within the CDM (circles) com-
pared to lQCD results (solid line) [1]. The confinement field
(dashed line) drops to σ ≈ 0.5σvac inside the string. Bottom:
the string potential within the CDM (squares) and a fit to the
Cornell potential (12). The first two data points are not in-
cluded in the fit as the Coulomb potential does not hold for
too small distances due to finite extension of the charges with
r.m.s. radius

√〈r2〉 ≈ 0.1 fm.

MeV/fm and a value αeff = 0.291 which is to be com-
pared to lQCD results where αeff = 0.295 [1]. It should
be noted that, due to the high bag pressure B, the elec-
tric fields are not strong enough to expel totally the non-
perturbative vacuum out of the string. The confinement
field only drops to σ ≈ 0.5σvac, i.e. the dielectric function
rises to κ ≈ 0.5. However, confinement is still achieved as
the energy of the color fields does not leak into the outside.

4 Baryons

In this section we study color fields of baryon like qqq–
configurations. Given that the energy scales linearly with
the q̄q separation, one can argue that configurations with
3 quarks sitting on the corner of an equilateral triangle will
form strings with minimal total string length. This would
be a configuration with a central Steiner point, called a
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Fig. 5. The color fields of a qqq configuration with � = 0.7(1.3)
fm top (bottom). The contour lines correspond to εg = 1, 3, 5, 7
fm−4 (top) and εg = 1, 1.4, 1.8 fm−4 (bottom).

Y configuration. However, if only two-quark interactions
are dominant, one might expect strings stretching pair-
wise from one quark to another, which would be the ∆
configuration. In lQCD the qqq potential has been stud-
ied and there are indications for both the ∆-baryon [1,7]
and the Y -baryon [8]. However, in the Gaussian Stochastic
Vacuum model [9] clear evidence for the Y ansatz is found.

In fig. 5 we plot the electric field distribution for the
baryon with the parameters given in table 1. The quarks
are separated a distance � = 0.7(1.3) fm from the Steiner
point, i.e. the qq distance is L =

√
3� ≈ 1.2(1.7) fm.

The field is clearly different from a simple superposi-
tion of 3 flux tubes between the quarks (see fig. 2). The
electric energy is pushed towards the center of the baryon,
and a Y -shaped configuration (at least for large quark sep-
arations) is seen.

5 Summary

We have analyzed the q̄q string within the CDM and
have reproduced the geometric profile function as well as
the potential. With a bag constant B = (320MeV)4 and
σvac = 1.5 fm−1 we get a string tension τ = 988 MeV/fm
and an effective strong-coupling αeff = 0.29. qqq configu-
rations with large qq separations tend to show a Y -shaped
geometry.

This work was supported by BMBF.

References

1. G.S. Bali, Phys. Rep. 343, 1 (2001).
2. R. Friedberg, T.D. Lee, Phys. Rev. D 15, 1694 (1977).
3. R. Friedberg, T.D. Lee, Phys. Rev. D 16, 1096 (1977).
4. C.T. Traxler, U. Mosel, T.S. Biro, Phys. Rev. C 59, 1620

(1999).
5. A. Schuh, H.J. Pirner, L. Wilets, Phys. Lett. B 174, 10

(1986).
6. G.S. Bali, K. Schilling, C. Schlichter, Phys. Rev. D 51, 5165

(1995).
7. C. Alexandrou, P. De Forcrand, A. Tsapalis, Phys. Rev. D

65, 054503 (2002).
8. T.T. Takahashi, H. Suganuma, Y. Nemoto, H. Matsufuru,

Phys. Rev. D 65, 114509 (2002).
9. D.S. Kuzmenko, Y.A. Simonov, Phys. At. Nucl. 64, 107

(2001).


